The problem posed in this chapter is that of simplifying the calculation of the change of axes by not making use of Euler angles, thereby avoiding the calculation of trigonometric lines and at the same time excluding any angular indeterminacy (a problem which arises from using Euler angles). A method for changing axes that uses only rational functions can save calculation time (in the case of ground resources) or lead to a reduction in the size of the calculator (in the case of on‐board equipment). Euler angles are widely used in mechanics and astronomy. Olinde‐Rodrigues's formulas make it possible to simplify and reduce the number of axis change calculations when explicit knowledge of angles is not required. To obtain the differential equations which define the evolution over time of the terms of the quaternion allowing the calculation of the change of axes, we can proceed as for the Euler method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Quaternion Methods


    Beteiligte:
    Louis, Gilles (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    15.06.2022


    Format / Umfang :

    22 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Quaternion Identities

    Markley, F. Landis / Crassidis, John L. | Springer Verlag | 2014


    Modified Unscented Quaternion Estimator Based on Quaternion Averaging

    Chang, Lubin / Hu, Baiqing / Chang, Guobin | AIAA | 2014


    Quaternion Singularity Revisited

    Carl Grubin | AIAA | 1979


    Quadrotor quaternion control

    Carino, J. / Abaunza, H. / Castillo, P. | IEEE | 2015