Increasing the operational efficiency of agricultural machines is essential by the use of artificial intelligence (AI)-based navigation, planning, and control algorithms to handle the increasing demand for food production without compromising sustainability. In this study, an end-to-end path planning algorithm (AgroRL) is proposed for aerial-ground robots team collaboration. In the proposed solution, while main operations in the field are handled by the ground vehicle, the aerial robot is responsible for re-planning a collisionfree trajectory for the ground robot when the robot faces an obstacle. Deep reinforcement learning is used for training the end-to-end policy for local re-planning of the aerial robot. The agent, informed by the global trajectory, generates local plans based on depth images. Variational autoencoders are also investigated for dimension reduction of the depth images in obstacle avoidance context to speed up deep reinforcement learning and alleviate the computational complexity of the policy network. The agriculture environment is developed in the Webots open-source robot simulator for training and testing purposes. The efficiency and efficacy of the end-to-end planner are evaluated over a number of cluttered field scenarios. The simulation experiments demonstrate a single aerial vehicle guiding multiple ground robots in agricultural operations.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Guidance of Agricultural Ground Robots Team with an Aerial Vehicle: A Cost-Effective Solution


    Beteiligte:

    Kongress:

    ISR Europe 2023 - 56th International Symposium on Robotics ; 2023 ; Stuttgart, Germany ISR Europe 2023 - 56th International Symposium on Robotics, Stuttgart, Germany, 26.09.2023-27.09.2023


    Erschienen in:

    Erscheinungsdatum :

    01.01.2023


    Format / Umfang :

    7 pages



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Controlling a team of ground robots via an aerial robot

    Michael, N. / Fink, J. / Kumar, V. | Tema Archiv | 2007


    Visual guidance unmanned aerial vehicle

    MIAO ZONGCHENG / WANG HAIYANG | Europäisches Patentamt | 2023

    Freier Zugriff

    Agricultural unmanned aerial vehicle

    GAO JIANNAN / WEN HAIJUN | Europäisches Patentamt | 2025

    Freier Zugriff

    Agricultural unmanned aerial vehicle

    WANG TIANHAO / PENG BIN / WU SHAOQIANG et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Agricultural unmanned aerial vehicle

    CHEN BO / CHEN HANJIE | Europäisches Patentamt | 2024

    Freier Zugriff