This paper presents an adaptive control using radial-basis-function neural networks (RBFNNs) for a two-wheeled self-balancing scooter. A mechatronic system structure of the scooter driven by two dc motors is briefly described, and its mathematical modeling incorporating two frictions between the wheels and the motion surface is derived. By decomposing the overall system into two subsystems (yaw motion and mobile inverted pendulum), one proposes two adaptive controllers using RBFNN to achieve self-balancing and yaw control. The performance and merit of the proposed adaptive controllers are exemplified by conducting several simulations and experiments on a two-wheeled self-balancing scooter.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Neural Network Control of a Self-Balancing Two-Wheeled Scooter


    Beteiligte:
    Tsai, Ching-Chih (Autor:in) / Huang, Hsu-Chih (Autor:in) / Lin, Shui-Chun (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2010


    Format / Umfang :

    9 Seiten, 12 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch




    Two-Wheeled Self-balancing Scooter

    CHEN JUNKANG | Europäisches Patentamt | 2019

    Freier Zugriff

    Two-wheeled self-balancing scooter

    CHEN JUNKANG | Europäisches Patentamt | 2020

    Freier Zugriff

    Two-wheeled electric self-balancing scooter

    JIANG SHUANGFENG | Europäisches Patentamt | 2015

    Freier Zugriff

    Novel two-wheeled electric balancing scooter

    ZHANG DIANXUAN / ZHOU DENGJIN / ZENG HUIHAI et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Design and Implementation of two-wheeled self-balancing intelligent scooter

    Liu, Yanchun / Hou, Miaomiao / Huang, Zhen et al. | SPIE | 2024