This paper proposes a novel method for measurement of traffic parameters, such as the number of passed vehicles, velocity and occupancy rate, by video image analysis. The method is based on a region classification followed by spatio-temporal image analysis. Local detection region images in traffic lanes are classified into one of four categories: the road, the vehicle, the reflection and the shadow, by using statistical and structural features. Misclassification at a frame is corrected by using temporally correlated features of vehicles in the spatio-temporal image. This capability of error correction results in the accurate estimation of traffic parameters even in high traffic congestion. Also headlight detection is employed for night time operation. Experimental results show that the accuracy is more than 94+ACU- in our test database of diverse operating conditions such as daytime, shadowy daytime, highway, urban way, rural way, rainy day, snowy day, dusk and nighttime. The average processing time is 30 ms per frame when four traffic lanes are processed, and real-time Operation could be realized while ensuring robust detection Performance even for high-speed vehicles up to 150 km h-1.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Measurement of traffic parameters in image sequence using spatio-temporal information


    Weitere Titelangaben:

    Messung der Straßenverkehrsparameter in Bildsequenzen mittels räumlich-zeitlicher Information


    Beteiligte:
    Lee, Daeho (Autor:in) / Park, Youngtae (Autor:in)

    Erschienen in:

    Measurement Science and Technology ; 19 , 11 ; 115503/1-115503/9


    Erscheinungsdatum :

    2008


    Format / Umfang :

    9 Seiten, 13 Bilder, 3 Tabellen, 31 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch




    Defining Traffic States using Spatio-temporal Traffic Graphs

    Roy, Debaditya / Kumar, K. Naveen / Mohan, C. Krishna | IEEE | 2020


    Image Sequence Analysis using a Spatio-Temporal Coding for Automatic Lipreading

    Baig, A. / Seguier, R. / Vaucher, G. et al. | British Library Conference Proceedings | 1999


    Traffic flow prediction method for traffic flow spatio-temporal data information

    LIU PENG / CHU YUQUAN | Europäisches Patentamt | 2024

    Freier Zugriff

    Acquistion of Traffic Information Using a Video Camera with 2D Spatio-Temporal Image Transformation Technique

    Li, C. / Ikeuchi, K. / Sakauchi, M. et al. | British Library Conference Proceedings | 1999


    Traffic state prediction method based on adaptive spatio-temporal information

    AN CHEN / LU ZIBAO / ZHANG JIALI et al. | Europäisches Patentamt | 2024

    Freier Zugriff