Safe, autonomous mobility in rough terrain is an important requirement for planetary exploration rovers. Knowledge of local terrain properties is critical to ensure a rover's safety on slopes and uneven surfaces. Visual features are often used to classify terrain; however, vision can be sensitive to lighting variations and other effects. This paper presents a method to classify terrain based on vibrations induced in the rover structure by wheel-terrain interaction during driving. This sensing mode is robust to lighting variations. Vibrations are measured using an accelerometer mounted on the rover structure. The classifier is trained using labeled vibration data during an offline learning phase. Linear discriminant analysis is used for online identification of terrain classes, such as sand, gravel, or clay. This approach has been experimentally validated on a laboratory testbed and on a four-wheeled rover in outdoor conditions.
Vibration-based terrain classification for planetary exploration rovers
IEEE Transactions on Robotics ; 21 , 6 ; 1185-1191
2005
7 Seiten, 28 Quellen
Aufsatz (Zeitschrift)
Englisch
Self-supervised terrain classification for planetary surface exploration rovers
British Library Online Contents | 2012
|Vision-based terrain classification and classifier fusion for planetary exploration rovers
DSpace@MIT | 2006
|Terrain Sensing for Planetary Rovers
TIBKAT | 2021
|