Knowledge of the physical properties of terrain surrounding a planetary exploration rover can be used to allow a rover system to fully exploit its mobility capabilities. Here a study of multi-sensor terrain classification for planetary rovers in Mars and Mars-like environments is presented. Two classification algorithms for color, texture, and range features are presented based on maximum likelihood estimation and support vector machines. In addition, a classification method based on vibration features derived from rover wheel-terrain interaction is briefly described. Two techniques for merging the results of these "low-level" classifiers are presented that rely on Bayesian fusion and meta-classifier fusion. The performance of these algorithms is studied using images from NASA's Mars Exploration Rover mission and through experiments on a four-wheeled test-bed rover operating in Mars-analog terrain. It is shown that accurate terrain classification can be achieved via classifier fusion from visual and tactile features.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Terrain Classification and Classifier Fusion for Planetary Exploration Rovers


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.03.2007


    Format / Umfang :

    1056912 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Vibration-based terrain classification for planetary exploration rovers

    Brooks, C.A. / Iagnemma, K. | Tema Archiv | 2005


    Self-supervised terrain classification for planetary surface exploration rovers

    Brooks, C. A. / Iagnemma, K. | British Library Online Contents | 2012


    Terrain Sensing for Planetary Rovers

    Dimastrogiovanni, Mauro / Cordes, Florian / Reina, Giulio | TIBKAT | 2021


    Terrain Adaptive Navigation for planetary rovers

    Helmick, D. / Angelova, A. / Matthies, L. | British Library Online Contents | 2009