In this paper, we attempt to address the issue of controlling the sensitivity parameters (or control gains) of automated driving vehicles in an open heterogeneous traffic flow system. The automated driving vehicles are supposedly equipped with adaptive cruise control and connectivity while the conventional vehicles are characterized by a stochastic safe time headway. To optimize the sensitivity parameters, the natural policy gradient reinforcement learning algorithm has been used for the best policy search. In this context, two performance indices were considered: the traffic breakdown probability and fuel consumption. After extensive simulations, it is found that the sensitivity parameters should depend on both the flow and the penetration rate for maximum performance. In particular, a low-penetration rate of 5% can improve traffic performance. A comparison with other algorithms suggests that natural policy gradient and Q-learning yield a good approximation and reduce significantly the computational cost.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimizing sensitivity parameters of automated driving vehicles in an open heterogeneous traffic flow system


    Beteiligte:
    Bouadi, Marouane (Autor:in) / Jia, Bin (Autor:in) / Jiang, Rui (Autor:in) / Li, Xingang (Autor:in) / Gao, Ziyou (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    02.12.2022


    Format / Umfang :

    45 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Automated Vehicles’ Effects on Urban Traffic Flow Parameters

    Gemma, Andrea / Cipriani, Ernesto / Crisalli, Umberto et al. | Springer Verlag | 2023




    Optimizing Signalized Intersections Performance under Conventional and Automated Vehicles Traffic

    Pourmehrab, Mahmoud / Elefteriadou, Lily / Ranka, Sanjay et al. | ArXiv | 2017

    Freier Zugriff

    Towards Collaborative Perception for Automated Vehicles in Heterogeneous Traffic

    Khan, Saifullah / Andert, Franz / Wojke, Nicolai et al. | Springer Verlag | 2018