The road-crossing of pedestrians at unsignalized crosswalks is a major concern for road safety. Previous studies focused on explaining of the mechanism underlying this behavior, but a framework of prediction is missing. To predict this behavior, only variables measured before the decision is made should be considered. To explore whether historical data is able to predict the behavior, this paper investigates pedestrians’ wait-or-go (WOG) behavior based on trajectory data and a machine learning method, both of which have been rarely applied by previous studies. The use of trajectory data enables the analysis of several influential factors related to moving characteristics, which are critical for pedestrians’ decision making. The framework based on machine learning, combined with trajectory data, achieves good explanatory power and predictability of pedestrians’ WOG behavior. Moreover, a possible application of this study is the prediction of pedestrian road-crossing intention in the context of autonomous cars.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Prediction of pedestrians’ wait-or-go decision using trajectory data based on gradient boosting decision tree


    Beteiligte:
    Xin, Xiuying (Autor:in) / Jia, Ning (Autor:in) / Ling, Shuai (Autor:in) / He, Zhengbing (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    31.12.2022


    Format / Umfang :

    25 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Generalized Flight Delay Prediction Method Using Gradient Boosting Decision Tree

    Liu, Fan / Sun, Jinlong / Liu, Miao et al. | IEEE | 2020


    TRAJECTORY PREDICTION BASED ON A DECISION TREE

    CALDWELL TIMOTHY / HUANG XIANAN / LORENZETTI JOSEPH et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Trajectory prediction based on a decision tree

    CALDWELL TIMOTHY / HUANG XIANAN / LORENZETTI JOSEPH et al. | Europäisches Patentamt | 2025

    Freier Zugriff