Traffic flow prediction, one of the essential problems in traffic control and guidance systems, is still drawing increasing attention in recent years with the new methods tipped by the success of AI. In this paper, we propose a novel model, namely self-attention generative adversarial networks for time-series prediction (SATP-GAN). The SATP-GAN method is based on self-attention and generative adversarial networks (GAN) mechanisms, which are composed of the GAN module and reinforcement learning (RL) module. In the GAN module, we apply the self-attention layer to capture the pattern of time-series data instead of RNNs (recurrent neural networks). In the RL module, we apply the RL algorithm to tune the parameters of our SATP-GAN model. We evaluate the framework on the real-world traffic dataset and obtain a consistent improvement of 6.5% over baseline methods. The SATP-GAN framework proves the GAN mechanism is also available for time-series prediction after fine-tuning the parameters.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    SATP-GAN: self-attention based generative adversarial network for traffic flow prediction


    Beteiligte:
    Zhang, Liang (Autor:in) / Wu, Jianqing (Autor:in) / Shen, Jun (Autor:in) / Chen, Ming (Autor:in) / Wang, Rui (Autor:in) / Zhou, Xinliang (Autor:in) / Xu, Cankun (Autor:in) / Yao, Quankai (Autor:in) / Wu, Qiang (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.01.2021


    Format / Umfang :

    17 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Generative Adversarial Network-Based Regional Epitaxial Traffic Flow Prediction

    Kang, Yan / Li, Jinyuan / Lee, Shin-Jye et al. | Springer Verlag | 2019


    Traffic flow prediction method based on generative adversarial network

    XU DONGWEI / LIN ZHENQIAN / YANG HAO et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Urban traffic flow prediction method based on generative adversarial network

    ZHU NINGBO / PU BIN / FAN XINXIN et al. | Europäisches Patentamt | 2020

    Freier Zugriff


    Urban traffic flow prediction method, system and equipment based on generative adversarial network

    WEI ZHICHENG / ZHANG TAOYI | Europäisches Patentamt | 2023

    Freier Zugriff