This paper proposes a multi-sensor fusion algorithm, combined with the traditional Kalman algorithm, to achieve UAV precise positioning. At the same time, consider more external constraints affecting the stability and safety of UAV flight, and build the extended Kalman multi-sensor filter model. The application of this model to the Intelligent forest inspection system will improve the positioning accuracy of UAV positioning, conducive to shorten the UAV cruise time and improve the reliability and stability of UAV.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research of Multi Sensor Fusion Positioning Algorithm Based on Kalman Algorithm


    Weitere Titelangaben:

    Lect. Notes on Data Eng. and Comms.Technol.


    Beteiligte:
    Abawajy, Jemal H. (Herausgeber:in) / Xu, Zheng (Herausgeber:in) / Atiquzzaman, Mohammed (Herausgeber:in) / Zhang, Xiaolu (Herausgeber:in) / Li, Faying (Autor:in) / Xiao, Juan (Autor:in) / Huang, Wenyi (Autor:in) / Cai, Sijie (Autor:in)

    Kongress:

    International Conference on Applications and Techniques in Cyber Intelligence ; 2022 ; Fuyang, China June 19, 2022 - June 20, 2022



    Erscheinungsdatum :

    30.03.2023


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Multi Sensor Fusion Based on Adaptive Kalman Filtering

    Yazdkhasti, Setareh / Sasiadek, Jurek Z. | Springer Verlag | 2017


    Implementation of Vision and Lidar Sensor Fusion Using Kalman Filter Algorithm

    Kunjumon, Reshma / Gopan G. S., Sangeetha | BASE | 2021

    Freier Zugriff

    Multi-sensor fusion positioning

    Lu, Zimo / Xu, Yanli | VDE-Verlag | 2022