The 3D Point cloud derived especially from drone-derived images is highly unstructured, redundant and has varied density. These point clouds need to be segmented and classified into different groups representing similar characteristics in the scene presented which is a challenging task especially when the 3D scene contains a mix of varied man-made or unstructured natural scenes such as vegetation etc. Successful operation of such technology will lead to a wide variety of remote sensing, computer vision and robotics applications. In this paper, we have used a hybrid approach for effective segmentation of the point cloud. The combination of RANSAC, DBSCAN and Euclidean method of Cluster Extraction proved to be useful for precise segmentation and classification of the point cloud.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The Segmentation of Drone Image derived 3D Point Cloud Using a Combination of RANSAC, DBSCAN and Clustering Methods


    Weitere Titelangaben:

    Lecture Notes in Civil Engineering


    Beteiligte:
    Jain, Kamal (Herausgeber:in) / Mishra, Vishal (Herausgeber:in) / Pradhan, Biswajeet (Herausgeber:in) / Singh, Puyam S. (Autor:in) / Nongsiej, Iainehborlang M. (Autor:in) / Marboh, Valarie (Autor:in)

    Kongress:

    International Conference on Unmanned Aerial System in Geomatics ; 2021 ; Roorkee, India April 02, 2021 - April 04, 2021



    Erscheinungsdatum :

    16.03.2023


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Robust Lane Line Detection and Tracking Using Enhanced DBSCAN Optimized RANSAC and Optical Flow

    Guo, Yu / Nie, Guigen / Gao, WenLiang et al. | Transportation Research Record | 2024


    Performance evaluation of 1-point-RANSAC visual odometry

    Scaramuzza, D. | British Library Online Contents | 2011


    Distributed Multi-Target Tracking with D-DBSCAN Clustering

    Xu, Shuoyuan / Shin, Hyo-Sang / Tsourdos, Antonios | IEEE | 2019



    Unsupervised Change Detection Using RANSAC

    Sharma, B. / Rishabh, I. / Rakshit, S. et al. | British Library Conference Proceedings | 2006