This paper proposes a novel clustering-based distributed multi-target tracking algorithm over a sensor network. Each local sensor runs a joint probabilistic data association filter to obtain local state estimation. The estimates are communicated between connected sensors for track-totrack association and fusion. A novel distributed DBSCAN (D-DBSCAN) clustering algorithm is proposed to solve the track-to-track association problem. The proposed algorithm shows advantages in computational efficiency compared with conventional distributed multi-target tracking approaches. Extensive simulations provided substantial evidence for the effectiveness of the proposed algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Distributed Multi-Target Tracking with D-DBSCAN Clustering


    Beteiligte:
    Xu, Shuoyuan (Autor:in) / Shin, Hyo-Sang (Autor:in) / Tsourdos, Antonios (Autor:in)


    Erscheinungsdatum :

    01.11.2019


    Format / Umfang :

    752491 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Grid-based DBSCAN for clustering extended objects in radar data

    Kellner, Dominik / Klappstein, Jens / Dietmayer, Klaus | IEEE | 2012


    Grid-Based DBSCAN for Clustering Extended Objects in Radar Data

    Kellner, D. / Klappstein, J. / Dietmayer, K. et al. | British Library Conference Proceedings | 2012



    Combined AGADESN with DBSCAN Algorithm for Cluster Target Motion Intention Recognition

    Xirui Xue / Shucai Huang / Daozhi Wei | DOAJ | 2022

    Freier Zugriff