The adaptive inverse control technique effectively compensates for uncertain parameters in linear and nonlinear systems. The acquiescent characteristics of Neural networks based AIC for uncertain systems are ensuring much research interest in recent times. Researchers have attempted to solve the adaptive stabilization problem for a class of high-order nonlinear systems with inverse dynamics and nonlinear parameterization with partial state-feedback [1].


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    NN-Based High-Order Adaptive Compensation Framework for Signal Dependencies


    Weitere Titelangaben:

    Studies in Systems, Decision and Control


    Beteiligte:
    Deb, Dipankar (Autor:in) / Burkholder, Jason (Autor:in) / Tao, Gang (Autor:in)


    Erscheinungsdatum :

    23.07.2021


    Format / Umfang :

    13 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Signal-Dependent Uncertainty Compensation: A General Framework

    Deb, Dipankar / Burkholder, Jason / Tao, Gang | Springer Verlag | 2021


    Association Reducts: A Framework for Mining Multi-attribute Dependencies

    Slezak, D. | British Library Conference Proceedings | 2005


    Ambiguity Function Based High-Order Translational Motion Compensation

    Zhuo, Zhenyu / Du, Lan / Lu, Xiaofei et al. | IEEE | 2023