Abstract This paper investigates the possibility of predicting the time series of the geomagnetic index Dst. The prediction is based on parameters of the solar wind and interplanetary magnetic field measured at Lagrange point L1 within the Advanced Composition Explorer (ACE) spacecraft experiment using machine learning methods—artificial neural networks: classical perceptrons, recurrent networks of long short-term memory (LSTM), and committees of predictive models. Ultimately, the best results have been obtained using heterogeneous committees based on neural networks of both types.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The Prediction of the Dst-Index Based on Machine Learning Methods


    Beteiligte:
    Efitorov, A. O. (Autor:in) / Myagkova, I. N. (Autor:in) / Shirokii, V. R. (Autor:in) / Dolenko, S. A. (Autor:in)

    Erschienen in:

    Cosmic Research ; 56 , 6 ; 434-441


    Erscheinungsdatum :

    2018-11-01


    Format / Umfang :

    8 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    The Prediction of the Dst-Index Based on Machine Learning Methods

    Efitorov, A. O. / Myagkova, I. N. / Shirokii, V. R. et al. | Online Contents | 2018


    Short-term prediction of airway congestion index using machine learning methods

    Yang, Zhao / Tang, Rong / Zeng, Weili et al. | Elsevier | 2021



    Machine Learning Based Prediction of Soil pH

    Sunori, Sandeep Kumar / Kumar, Santosh / Anandapriya, B. et al. | IEEE | 2021


    Severity prediction of motorcycle crashes with machine learning methods

    Wahab, Lukuman / Jiang, Haobin | Taylor & Francis Verlag | 2020