Abstract This paper investigates the possibility of predicting the time series of the geomagnetic index Dst. The prediction is based on parameters of the solar wind and interplanetary magnetic field measured at Lagrange point L1 within the Advanced Composition Explorer (ACE) spacecraft experiment using machine learning methods—artificial neural networks: classical perceptrons, recurrent networks of long short-term memory (LSTM), and committees of predictive models. Ultimately, the best results have been obtained using heterogeneous committees based on neural networks of both types.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The Prediction of the Dst-Index Based on Machine Learning Methods


    Beteiligte:
    Efitorov, A. O. (Autor:in) / Myagkova, I. N. (Autor:in) / Shirokii, V. R. (Autor:in) / Dolenko, S. A. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2018




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch


    Schlagwörter :

    Klassifikation :

    BKL:    55.60 Raumfahrttechnik / 39.00 Astronomie: Allgemeines / 50.93 Weltraumforschung
    Lokalklassifikation TIB:    770/3520/8000



    The Prediction of the Dst-Index Based on Machine Learning Methods

    Efitorov, A. O. / Myagkova, I. N. / Shirokii, V. R. et al. | Springer Verlag | 2018


    Short-term prediction of airway congestion index using machine learning methods

    Yang, Zhao / Tang, Rong / Zeng, Weili et al. | Elsevier | 2021


    Machine Learning Based Prediction of Soil pH

    Sunori, Sandeep Kumar / Kumar, Santosh / Anandapriya, B. et al. | IEEE | 2021


    Severity prediction of motorcycle crashes with machine learning methods

    Wahab, Lukuman / Jiang, Haobin | Taylor & Francis Verlag | 2020


    Comparing Machine Learning and Deep Learning Methods for Real-Time Crash Prediction

    Theofilatos, Athanasios / Chen, Cong / Antoniou, Constantinos | Transportation Research Record | 2019