Urban vehicle emission pollution has become the main factor affecting urban air quality. How to achieve fine-grained emission prediction is of great significance to vehicle emission supervision. Existing works mainly considered the emission prediction as a time sequence forecasting task, and extracted the temporal and spatial features of emission sequence based on road network prior information. However, road emission patterns are usually influenced by diverse environmental factors like weather and traffic conditions. These urban multi-source data have different properties, how to utilize cross-domain factors to assist emission prediction remains to be studied. To this end, a multi-source fusion spatiotemporal network is devised to simultaneously capture external factors’ impact on emission prediction. Specifically, the proposed model adopt an attention adaptive fusion module to achieve multi-source heterogeneous data fusion. Experiment results on Beijing emission dataset have indicated that our method surpass the existing baselines.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-source Adaptive Fusion Spatiotemporal Network for Traffic Emission Prediction


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yan, Liang (Herausgeber:in) / Duan, Haibin (Herausgeber:in) / Deng, Yimin (Herausgeber:in) / Zhang, Guoan (Autor:in) / Cao, Yang (Autor:in) / Pei, Lihong (Autor:in) / Kang, Yu (Autor:in)

    Kongress:

    International Conference on Guidance, Navigation and Control ; 2024 ; Changsha, China August 09, 2024 - August 11, 2024



    Erscheinungsdatum :

    02.03.2025


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Traffic flow prediction method of deep network based on fusion of spatiotemporal features

    CHEN FENGQING | Europäisches Patentamt | 2020

    Freier Zugriff

    Attention-Based Spatiotemporal Adaptive Graph Diffusion Convolutional Network For Traffic Flow Prediction

    He, Qiansong / Xia, Dawen / Li, Jianjun et al. | Transportation Research Record | 2025


    Trajectory-Based Spatiotemporal Multi-Task Multi-Graph Network for Traffic State Prediction

    Fang, Jie / Chen, Wentian / Xu, Mengyun et al. | Transportation Research Record | 2023


    Optimised LSTM Neural Network for Traffic Speed Prediction with Multi-Source Data Fusion

    Yongpeng ZHAO / Yongcang LI / Changxi MA et al. | DOAJ | 2024

    Freier Zugriff