Autonomous Vehicles (AVs) are essential to Intelligent Transportation Systems (ITS) and the future of transportation. Accurate lane-level traffic flow prediction is crucial for AVs to assess traffic conditions and make timely decisions, such as lane changes and vehicle following. However, the complexities of traffic environments and non-linear data distributions hinder the extraction of spatial and temporal features. Many studies use convolutional structures with adjacency matrices to capture spatial dependencies, but these often focus on a single traffic state, risking biased information and ignoring interconnections among multiple states. Additionally, they primarily derive spatial features from network topology, neglecting data-driven correlations. To address these issues, we propose the Adaptive MultiSource Correlation Fusion (AMSCF) approach, which models spatial correlations to enhance lane-level traffic prediction. We extract spatial correlations from historical data and network topology using multi-source traffic data to construct a spatial graph integrated within a Graph Convolutional Network (GCN). Furthermore, we introduce a dynamically improved adjacency matrix that accounts for both physical connections and the impact of lane changes. Extensive experiments show that AMSCF outperforms state-of-the-art methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Adaptive Multi-Source Correlation Fusion Approach for Lane-Level Traffic Flow Prediction


    Beteiligte:
    Jiang, Ruiyuan (Autor:in) / Fan, Pengfei (Autor:in) / Wang, Chengming (Autor:in) / Zhang, Yuli (Autor:in) / Wang, Shangbo (Autor:in) / Jia, Dongyao (Autor:in)


    Erscheinungsdatum :

    28.03.2025


    Format / Umfang :

    1278603 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Expressway lane-level speed prediction method based on multi-source data fusion

    SUN DIHUA / ZHAO MIN / ZHAO WENZHU et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Multi-source Adaptive Fusion Spatiotemporal Network for Traffic Emission Prediction

    Zhang, Guoan / Cao, Yang / Pei, Lihong et al. | Springer Verlag | 2025


    A Traffic Flow Prediction Method Based on Multi-Source Data Fusion

    Xiang, Zhen / Gu, Jidong / Dai, Xufeng et al. | Springer Verlag | 2025


    Urban traffic flow prediction method based on multi-source data fusion

    LIU JIANQI / HE QI / ZENG BI et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Lane level traffic

    CHEN XIN / MA XIANG / OSTROVSKIY ROMAN et al. | Europäisches Patentamt | 2017

    Freier Zugriff