This chapter proposes a discrete-time differentiation algorithm of arbitrary order inspired by the uniform robust exact differentiator [1] and the generalized differentiator with negative homogeneity degree [2]. As the well-known explicit Euler method is not suitable for discretizing algorithms with the fixed-time convergence property, a semi-implicit discretizationSemi-implicit discretization and a stable explicit Euler discretization approach are proposed. It is proven that the proposed discrete-time algorithms are globally asymptotically stable in the unperturbed case for arbitrary order and converge to an attractive invariant set around the origin in the perturbed case. Furthermore the performance of the proposed algorithm is evaluated via simulation studies.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Discrete-Time Implementations of Differentiators Homogeneous in the Bi-Limit


    Weitere Titelangaben:

    Studies in Systems, Decision and Control


    Beteiligte:
    Oliveira, Tiago Roux (Herausgeber:in) / Fridman, Leonid (Herausgeber:in) / Hsu, Liu (Herausgeber:in) / Rüdiger-Wetzlinger, Maximilian (Autor:in) / Reichhartinger, Markus (Autor:in) / Horn, Martin (Autor:in)


    Erscheinungsdatum :

    01.11.2023


    Format / Umfang :

    24 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Bi-homogeneous Differentiators

    Moreno, Jaime A. | Springer Verlag | 2023


    New Homogeneous Controllers and Differentiators

    Hanan, Avi / Jbara, Adam / Levant, Arie | Springer Verlag | 2020


    Effect of Euler Explicit and Implicit Time Discretizations on Variable-Structure Differentiators

    Mojallizadeh, Mohammad Rasool / Brogliato, Bernard | Springer Verlag | 2023



    Silicon-Based Integrated Tunable Fractional Order Photonic Temporal Differentiators

    Liu, W. / Zhang, W. / Yao, J. | British Library Online Contents | 2017