Underactuated multi-fingered humanoid hands easily and safely accomplish a wide variety of grasping tasks in human-centric scenarios, questioning about its performance in ordinary manipulation tasks after the grasp of an object. High state-space dimensionality inherent to dexterous fully actuated multi-finger manipulators poses control difficulties that may be unnecessary in some typical activities, which creates a window of opportunity for underactuated end-effectors to be employed. We propose a two-stage pipeline system to address in-hand manipulation of an object in a real-world scenario, composed of an off-the-shelf category-level object pose estimator to deal with the previously unseen item and a model-free Deep Reinforcement Learning (DRL) algorithm aided by Imitation Learning (IL) to get more robust and natural movements. Our experiments show a positive learning curve for the in-hand object rotation task, dealing reliably with real environment problems such as sample inefficiency and noisy object estimations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    In-Hand Manipulation of Unseen Objects Through 3D Vision


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Tardioli, Danilo (Herausgeber:in) / Matellán, Vicente (Herausgeber:in) / Heredia, Guillermo (Herausgeber:in) / Silva, Manuel F. (Herausgeber:in) / Marques, Lino (Herausgeber:in) / Pereira, Martim (Autor:in) / Dimou, Dimitrios (Autor:in) / Moreno, Plinio (Autor:in)

    Kongress:

    Iberian Robotics conference ; 2022 ; Zaragoza, Spain November 23, 2022 - November 25, 2022



    Erscheinungsdatum :

    19.11.2022


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Measuring Generalisation to Unseen Viewpoints, Articulations, Shapes and Objects for 3D Hand Pose Estimation under Hand-Object Interaction

    Armagan, Anil / Garcia-Hernando, Guillermo / Baek, Seungryul et al. | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2020

    Freier Zugriff

    Gaze direction influences grasping actions towards unseen, haptically explored, objects

    Pirruccio, Martina / Monaco, Simona / Della Libera, Chiara et al. | BASE | 2020

    Freier Zugriff

    UNSEEN ENVIRONMENT CLASSIFICATION

    SHOLINGAR GAUTHAM / SUNDAR SOWNDARYA / JAIN JINESH et al. | Europäisches Patentamt | 2022

    Freier Zugriff