This paper introduces an approach for Dynamic Risk Assessment (DRA) for Automated Driving System (ADS) using an Artificial Neural Network (ANN) model. With the increasing complexity and intelligence of ADS, traditional risk assessment methods, which are adequate for human-driven vehicles, fall short in addressing the dynamic and evolving operational environment of ADS. Our proposed approach leverages the ANN model, a deep learning technique, to analyze riskspecific context information. This analysis enables the identification and classification of severity and controllability ratings, vital for continuous risk assessment for ADS. ANN models have demonstrated significant success in various real-world ADS applications, particularly due to their ability to efficiently process and recognize patterns within large, complex datasets. By applying ANNs to risk-specific context information, our approach provides an accurate and objective runtime assessment of risk levels, thereby enhancing the situational awareness of ADS. This enhancement enables ADS to more effectively predict and assess risks that could lead to accidents. This capability marks a step forward, overcoming the limitations of traditional risk assessment methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dynamic Risk Assessment for Automated Driving System using Artificial Neural Network


    Beteiligte:
    Berns, Karsten (Herausgeber:in) / Dreßler, Klaus (Herausgeber:in) / Kalmar, Ralf (Herausgeber:in) / Stephan, Nicole (Herausgeber:in) / Teutsch, Roman (Herausgeber:in) / Thul, Martin (Herausgeber:in) / Patel, Anil Ranjitbhai (Autor:in) / Gorasiya, Sanjaykumar (Autor:in) / Liggesmeyer, Peter (Autor:in)

    Kongress:

    International Commercial Vehicle Technology Symposium ; 2024 ; Kaiserslautern, Deutschland March 13, 2024 - March 14, 2024


    Erschienen in:

    Commercial Vehicle Technology 2024 ; Kapitel : 22 ; 377-390


    Erscheinungsdatum :

    02.10.2024


    Format / Umfang :

    14 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Deutsch




    Risk assessment in automated driving environment

    YLENHAMMAR MAGNUS / SVEINKRONA HU KAN | Europäisches Patentamt | 2022

    Freier Zugriff

    Vehicle Driving Risk Prediction Model by Reverse Artificial Intelligence Neural Network

    Huizhe Ding / Raja Ariffin Raja Ghazilla / Ramesh Singh Kuldip Singh et al. | DOAJ | 2022

    Freier Zugriff

    AUTOMATED DRIVING SYSTEM AND AUTOMATED DRIVING SWITCH ASSESSMENT PROGRAM

    FUJIMURA TADASHI / NISHIDA KENTARO | Europäisches Patentamt | 2017

    Freier Zugriff

    Risk Assessment for Integral Safety in Automated Driving

    Hruschka, Clemens Markus / Topfer, Daniel / Zug, Sebastian | IEEE | 2019


    An intelligent neural network based driving system using artificial net extension

    Srinivasan, T. / Chandrasekhar, A. / Seshadrim, J. et al. | Tema Archiv | 2005