This paper presents a novel risk assessment approach that allows to control the behaviour of self driving cars. This novel continuous real-time risk assessment considers uncertainties as well as accident severity predictions to intervene integrally. Thus it not only allows predictive traffic interaction and collision avoidance, but also an intelligent crash interaction. These decisions are made on incomplete data, due to imperfect environment perception data and road users' unknown intentions. Advanced, situational and numerical dependencies are regarded. Furthermore, the benefit of multiple approximating accident severity estimations are discussed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Risk Assessment for Integral Safety in Automated Driving


    Beteiligte:


    Erscheinungsdatum :

    01.02.2019


    Format / Umfang :

    977807 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Risk assessment for integral safety in operational motion planning of automated driving

    Hruschka, Clemens / Technische Universität Bergakademie Freiberg | TIBKAT | 2021

    Freier Zugriff

    Risk assessment in automated driving environment

    YLENHAMMAR MAGNUS / SVEINKRONA HU KAN | Europäisches Patentamt | 2022

    Freier Zugriff

    AUTOMATED DRIVING SAFETY SYSTEM

    KAMATA NOBUHIDE | Europäisches Patentamt | 2019

    Freier Zugriff

    Safety assessment of environment perception in automated driving vehicles

    Berk, Mario Jürgen / Technische Universität München | TIBKAT | 2019


    Driver Behavior Model for the Safety Assessment of Automated Driving

    Fries, Alexandra / Fahrenkrog, Felix / Donauer, Katharina et al. | IEEE | 2022