When a single-phase-to-ground (SPG) fault occurs in a resonant grounding distribution system, the amplitude of the transient zero-sequence current waveform at the upstream detection node of the fault point is greater than the amplitude of the transient zero-sequence current waveform at the downstream detection node, and the two polarities are opposite. The transient zero-sequence currents at the detection nodes on the same side of the fault point are very similar. Based on this, the paper proposes a new method of SPG fault location based on a deep belief network (DBN). Firstly, this method uses the fault transient zero-sequence current waveform obtained from each detection node in the simulation model as the input of DBN, and the deep features of the fault signals are extracted. Secondly, the deep features are divided into upstream detection nodes category and downstream detection nodes category by a supervised classifier. And then, the fault location is implemented by analyzing the network structure of fault detection nodes. Finally, the testing results of the simulation data prove that the algorithm has high recognition accuracy under different fault grounding points, different initial phase angles of faults, different grounding resistances, and different types of faults, and has certain practical engineering application value.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Single-Phase-to-Ground Fault Location Method Based on Deep Belief Network


    Weitere Titelangaben:

    Smart Innovation, Systems and Technologies


    Beteiligte:
    Wu, Tsu-Yang (Herausgeber:in) / Ni, Shaoquan (Herausgeber:in) / Chu, Shu-Chuan (Herausgeber:in) / Chen, Chi-Hua (Herausgeber:in) / Favorskaya, Margarita (Herausgeber:in) / Li, Jia-Min (Autor:in) / Liu, Shi-Jian (Autor:in) / Shao, Xiang (Autor:in) / Pan, Jeng-Shyang (Autor:in)


    Erscheinungsdatum :

    30.11.2021


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A Single-Phase-to-Ground Fault Location Method Based on Deep Belief Network

    Li, Jia-Min / Liu, Shi-Jian / Shao, Xiang et al. | TIBKAT | 2022


    A novel Single-Phase-to-Ground (SPG) fault location technology in FTU-based distribution network using current fault components

    Hu, Yutao / Zhou, Han / Yu, Xiaochen et al. | British Library Conference Proceedings | 2022


    Fault diagnosis of traction transformer based on improved deep belief network

    Ma, Hailong / He, Deqiang / Jin, Zhenzhen et al. | SPIE | 2024


    Electric vehicle charging process fault early warning method based on adaptive deep belief network

    YANG QING / GAO DEXIN / WANG YI | Europäisches Patentamt | 2021

    Freier Zugriff

    Semisupervised fault diagnosis of aeroengine based on denoising autoencoder and deep belief network

    Lv, Defeng / Wang, Huawei / Che, Changchang | Emerald Group Publishing | 2022