Ensuring the reliability of the traction transformer, which is a critical electrical equipment for trains, is crucial for the entire electrified railway. Hence, increasing the precision of fault diagnosis for train traction transformers is necessary. A model using the dung beetle optimization (DBO) algorithm to optimize the deep belief network (DBN) to realize fault diagnosis of traction transformers is presented. Firstly, the DBO is employed to optimize the learning rate and the quantity of neurons in every hidden layer of DBN. Then, the optimized fundamental parameter values are assigned to the DBN to obtain the optimized DBO-DBN fault diagnosis model. Finally, the traction transformer's DGA online monitoring data and the manual oil sample data were used to verify the method. According to experiment findings, the proposed DBO-DBN model can identify faults with up to 95.8% precision. Compared with the basic DBN, SVM, and BPNN approaches, the proposed method's precision for classification rises by 3.3%, 8.3%, and 12.5%, respectively, which verifies the effectiveness of the proposed method. It furnishes an effective tool for the fault diagnosis of traction transformers.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fault diagnosis of traction transformer based on improved deep belief network


    Beteiligte:
    Chen, Wanmi (Herausgeber:in) / Liu, Xiaogang (Herausgeber:in) / Ma, Hailong (Autor:in) / He, Deqiang (Autor:in) / Jin, Zhenzhen (Autor:in) / Wu, Jinxin (Autor:in)

    Kongress:

    Fourth International Conference on Mechanical Engineering, Intelligent Manufacturing, and Automation Technology (MEMAT 2023) ; 2023 ; Guilin, China


    Erschienen in:

    Proc. SPIE ; 13082


    Erscheinungsdatum :

    01.04.2024





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Engine components fault diagnosis using an improved method of deep belief networks

    Lin, Xue Sen / Li, Ben Wei / Yang, Xin Yi | IEEE | 2016


    Transformer Fault Diagnosis Algorithm for Traction Power Supply System Based on IoT

    Wu, Zhensheng / Zhang, Zhongli / He, Jie et al. | TIBKAT | 2022


    Transformer Fault Diagnosis Algorithm for Traction Power Supply System Based on IoT

    Wu, Zhensheng / Zhang, Zhongli / He, Jie et al. | British Library Conference Proceedings | 2022


    Transformer Fault Diagnosis Algorithm for Traction Power Supply System Based on IoT

    Wu, Zhensheng / Zhang, Zhongli / He, Jie et al. | Springer Verlag | 2022


    Semisupervised fault diagnosis of aeroengine based on denoising autoencoder and deep belief network

    Lv, Defeng / Wang, Huawei / Che, Changchang | Emerald Group Publishing | 2022