Autonomous agents operating in perceptually aliased environments should ideally be able to solve the data association problem. Yet, planning for future actions while considering this problem is not trivial. State of the art approaches therefore use multi-modal hypotheses to represent the states of the agent and of the environment. However, explicitly considering all possible data associations, the number of hypotheses grows exponentially with the planning horizon. As such, the corresponding Belief Space Planning problem quickly becomes unsolvable. Moreover, under hard computational budget constraints, some non-negligible hypotheses must eventually be pruned in both planning and inference. Nevertheless, the two processes are generally treated separately and the effect of budget constraints in one process over the other was barely studied. We present a computationally efficient method to solve the nonmyopic Belief Space Planning problem while reasoning about data association. Moreover, we rigorously analyze the effects of budget constraints in both inference and planning.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Nonmyopic Distilled Data Association Belief Space Planning Under Budget Constraints


    Weitere Titelangaben:

    Springer Proceedings in Advanced Robotics


    Beteiligte:
    Billard, Aude (Herausgeber:in) / Asfour, Tamim (Herausgeber:in) / Khatib, Oussama (Herausgeber:in) / Shienman, Moshe (Autor:in) / Indelman, Vadim (Autor:in)

    Kongress:

    The International Symposium of Robotics Research ; 2022 ; Geneva, Switzerland September 25, 2022 - September 30, 2022


    Erschienen in:

    Robotics Research ; Kapitel : 8 ; 102-118


    Erscheinungsdatum :

    08.03.2023


    Format / Umfang :

    17 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Nonmyopic Distilled Data Association Belief Space Planning Under Budget Constraints

    Shienman, Moshe / Indelman, Vadim | British Library Conference Proceedings | 2022


    Nonmyopic GOSPA-Driven Gaussian Bernoulli Sensor Management

    Jones, George / Garcia-Fernandez, Angel F. / Blackman, Christian | IEEE | 2024


    Nonmyopic Sensor Control for Target Search and Track Using a Sample-Based GOSPA Implementation

    Hernandez, Marcel / Garcia-Fernandez, Angel F. / Maskell, Simon | IEEE | 2024


    Motion Planning Under Uncertainty Using Differential Dynamic Programming in Belief Space

    van den Berg, Jur / Patil, Sachin / Alterovitz, Ron | British Library Conference Proceedings | 2011


    EFFICIENT INFERENCE UPDATE USING BELIEF SPACE PLANNING

    INDELMAN VADIM / FARHI ELAD | Europäisches Patentamt | 2021

    Freier Zugriff