In addressing the challenge of uneven passenger flow distribution within urban rail transit networks, this study introduces an advanced multi-path passenger flow assignment model grounded in regret theory. The model meticulously constructs a multi-routing space-time topological network and incorporates regret theory to accurately depict passengers’ decision-making processes. By taking into account key factors such as perceived travel time, the number of transfers, and train congestion levels, the model aims to allocate passenger flow based on the principle of minimizing passengers’ anticipated regret. This innovative approach not only enhances the balance between supply and demand but also significantly improves operational efficiency. The findings of this study provide robust theoretical support and practical solutions for optimizing urban rail transit network management, offering a novel perspective on achieving more efficient and passenger-friendly transit operations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Passenger Flow Assignment Model for Multi-Routing Operation of Urban Rail Transit Based on Regret Theory


    Weitere Titelangaben:

    Lecture Notes in Civil Engineering


    Beteiligte:
    Meng, Lingyun (Herausgeber:in) / Qian, Yongsheng (Herausgeber:in) / Bai, Yun (Herausgeber:in) / Lv, Bin (Herausgeber:in) / Tang, Yuanjie (Herausgeber:in) / Geng, Huilin (Autor:in) / Xu, Dejie (Autor:in) / Hu, Chenhao (Autor:in)

    Kongress:

    International Conference on Traffic and Transportation Studies ; 2024 ; Lanzhou, China August 23, 2024 - August 25, 2024



    Erscheinungsdatum :

    14.11.2024


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch







    Streamlined Hierarchical Topology Network-Based Passenger Flow Assignment of Urban Rail Transit

    Hao, Yuanyuan / Bingfeng, Si / Zhao, Chunliang | Transportation Research Record | 2022