Manual diagnosis of Alzheimer’s Disease (AD) from medical images is challeng-ing and prone to human subjectivity and errors. This paper explores the application of transfer learning, utilizing pre-trained convolutional neural networks, namely, VGG16 to extract the features from magnetic resonance imaging images of four stages of AD. The ability of four machine learning classifiers, i.e., Support Vector Machine (SVM), Logistic Regression (LR) and k-Nearest Neighbours (kNN) to class the different stages based on the extracted features are investigated. It was demonstrated that the VGG16+LR pipeline holds a promising ability in discerning the classes. The preliminary results suggest that the proposed approach is a suitable method for computer-aided diagnosis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The Classification of Alzheimer’s Disease: A Transfer Learning Approach


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Abdul Majeed, Anwar P.P. (Herausgeber:in) / Yap, Eng Hwa (Herausgeber:in) / Liu, Pengcheng (Herausgeber:in) / Huang, Xiaowei (Herausgeber:in) / Nguyen, Anh (Herausgeber:in) / Chen, Wei (Herausgeber:in) / Kim, Ue-Hwan (Herausgeber:in) / He, Haoyu (Autor:in) / Xu, Yifeng (Autor:in) / Abdul Majeed, Anwar P. P. (Autor:in)

    Kongress:

    International Conference on Robot Intelligence Technology and Applications ; 2023 ; Taicang December 06, 2023 - December 08, 2023



    Erscheinungsdatum :

    29.11.2024


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    The Classification of Kidney Disease: A Feature-Based Transfer Learning Approach

    Xu, Yifeng / He, Haoyu / Majeed, Anwar P. P. Abdul et al. | Springer Verlag | 2024


    Hybrid Deep Learning Architecture for Accurate Classification of Alzheimer’s Disease using MRI Images

    Balakrishnan, Nair Bini / Pillai, Anitha S / Panackal, Jisha Jose | IEEE | 2024



    Revolutionizing Alzheimer's Disease Prediction using InceptionV3 in Deep Learning

    Jansi, R. / Gowtham, Naraganti / Ramachandran, Siva et al. | IEEE | 2023


    Classification of Skin Disease from Skin images using Transfer Learning Technique

    Janoria, Honey / Minj, Jasmine / Patre, Pooja | IEEE | 2020