Automobiles have become an indispensable mode of transportation and travel as the economy has grown. Tires are vital components of automobiles, and their wear contributes to a huge number of road accidents. As a result, anticipating tyre life has become one of the most important criteria to avoid accidents. The proposed work classifies the tire wear condition such as No wear, Light Wear, Moderate Wear, High Wear, and Extreme Wear using a pre-trained deep learning model. The first tyre dataset was created with 1403 total images in 5 classes. Then the tyre dataset was used to classify the tire wear condition by the pre-trained model ResNet50. When compared to other pre-trained models such as SqueezNet, ResNet18, ResNet101, and InceptionResNet, the ResNet50 provided better recognition accuracy of 95.1%. The performance of the proposed method was compared with state of art methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Transfer Learning Approach for Tyre Wear Classification


    Beteiligte:
    Mansoor Roomi, S. Mohamed (Autor:in) / Priya, K. (Autor:in) / Jeyakumar, R. (Autor:in) / Aswin, R. (Autor:in) / Ramanathan, S. (Autor:in)


    Erscheinungsdatum :

    18.05.2023


    Format / Umfang :

    831290 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Tyre Wear Awareness

    Europäisches Patentamt | 2021

    Freier Zugriff

    TYRE WEAR DETERMINATION

    ERDINC UMUR / BALIGA NIKHIL | Europäisches Patentamt | 2025

    Freier Zugriff

    Tyre Wear Awareness

    PAUL GLOVER | Europäisches Patentamt | 2022

    Freier Zugriff

    TYRE WEAR DETERMINATION

    ERDINC UMUR / BALIGA NIKHIL | Europäisches Patentamt | 2025

    Freier Zugriff

    Tyre with wear indicators

    RICHARD COSTELLO | Europäisches Patentamt | 2017

    Freier Zugriff