In response to the problem of prolonged operation time caused by inefficient and suboptimal trajectories of electric shovels during excavation, this paper proposes a robotic arm trajectory planning method based on an Improved Chicken Swarm Optimization (ICSO) algorithm. A trajectory planning experiment is conducted, where sequences of time and position in joint space are used to construct interpolation curves via quintic polynomial functions, with time as the optimization objective and joint angular velocity and acceleration of the robotic arm as constraints. The position update methods for the rooster, hen, and chick within the traditional Chicken Swarm Optimization (CSO) algorithm are refined, incorporating a series of new position update operations to form the ICSO algorithm. Comparative simulations between the ICSO and traditional CSO algorithms show that the improved algorithm significantly reduces the motion time of the robotic arm, effectively enhancing operational efficiency.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Trajectory Optimization for Mining Robots Based on an Improved Chicken Swarm Optimization Algorithm


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Liu, Jun (Herausgeber:in) / Wang, Yongcai (Herausgeber:in) / Wu, Bin (Herausgeber:in) / Jiang, Zehao (Herausgeber:in) / Xiao, Yao (Herausgeber:in) / Yang, Jianjian (Autor:in) / Zhang, Teng (Autor:in) / Zhao, Guanghui (Autor:in) / Cheng, Qi (Autor:in) / Chen, Kangshuai (Autor:in)

    Kongress:

    International Conference on Artificial Intelligence and Autonomous Transportation ; 2024 ; Beijing, China December 06, 2024 - December 08, 2024



    Erscheinungsdatum :

    16.03.2025


    Format / Umfang :

    13 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Trajectory tracking control based on improved particle swarm optimization

    Wang, Yuxiao / Chao, Tao / Wang, Songyan et al. | IEEE | 2016


    Multiconstrained Ascent Trajectory Optimization Using an Improved Particle Swarm Optimization Method

    Mu Lin / Zhao-Huanyu Zhang / Hongyu Zhou et al. | DOAJ | 2021

    Freier Zugriff

    Hypersonic Vehicle Reentry Trajectory Optimization Based on Particle Swarm Algorithm

    Haiqing, Wang / Junfeng, Jiang / Xinlu, Guo et al. | Springer Verlag | 2025