In this paper, a hypersonic vehicle reentry trajectory optimization method based on particle swarm optimization is proposed. Firstly, the dynamics model is established, and then the flight constraints are transformed into the constraints of the fixed parameters of the reference profile by planning the angle of attack-velocity profile and the reentry corridor. Secondly, according to the relationship between the continuity of the reference profile and the equations, the optimization parameters of the reference profile are reduced, and the multi-objective function of the optimization parameters is designed. Finally, the reentry trajectory optimization method is designed by combining the particle swarm optimization algorithm. Through the simulation analysis of the Common Aero Vehicle (CAV-H), the feasibility of the optimization algorithm in this paper is verified.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Hypersonic Vehicle Reentry Trajectory Optimization Based on Particle Swarm Algorithm


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Liu, Lianqing (Herausgeber:in) / Niu, Yifeng (Herausgeber:in) / Fu, Wenxing (Herausgeber:in) / Qu, Yi (Herausgeber:in) / Haiqing, Wang (Autor:in) / Junfeng, Jiang (Autor:in) / Xinlu, Guo (Autor:in) / Linfei, Hou (Autor:in) / Kai, Liu (Autor:in)

    Kongress:

    International Conference on Autonomous Unmanned Systems ; 2024 ; Shenyang, China September 19, 2024 - September 21, 2024



    Erscheinungsdatum :

    31.03.2025


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Particle Swarm Optimization Applied to Spacecraft Reentry Trajectory

    Rahimi, Afshin / Dev Kumar, Krishna / Alighanbari, Hekmat | AIAA | 2013




    Reentry Trajectory Planning of Hypersonic Gliding Vehicle Based on IFDS Algorithm

    Zhang, Ke / Wang, Mengyang / Zhang, Zhaohua et al. | Springer Verlag | 2025