Norm Optimal Iterative Learning Control is formulated and illustrated by applications to discrete and continuous state-space systems. Convergence conditions and other properties are established. Frequency attenuation and eigenstructure interpretations are derived and some insight into parameter choice is revealed. Robustness conditions are put forward and written in frequency domain terms for discrete state-space systems. Issues that affect algorithm performance are discussed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Norm Optimal Iterative Learning Control


    Weitere Titelangaben:

    Advances in Industrial Control


    Beteiligte:
    Chu, Bing (Autor:in) / Owens, David H. (Autor:in)


    Erscheinungsdatum :

    13.06.2025


    Format / Umfang :

    43 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Predictive Norm Optimal Iterative Learning Control

    Chu, Bing / Owens, David H. | Springer Verlag | 2025


    Norm Optimal Iterative Learning Control with ConstraintsNOILC, Constraints

    Chu, Bing / Owens, David H. | Springer Verlag | 2025


    Computationally‐light non‐lifted data‐driven norm‐optimal iterative learning control

    Chi, Ronghu / Hou, Zhongsheng / Jin, Shangtai et al. | British Library Online Contents | 2018


    Generalized norm optimal iterative learning control with intermediate point and sub-interval tracking

    Owens, D. H. / Freeman, C. T. / Chu, B. | British Library Online Contents | 2015