This paper proposes a distributed estimation and control algorithm to allow a team of robots to search for and track an unknown number of targets. The number of targets in the area of interest varies over time as targets enter or leave, and there are many sources of sensing uncertainty, including false positive detections, false negative detections, and measurement noise. The robots use a novel distributed Multiple Hypothesis Tracker (MHT) to estimate both the number of targets and the states of each target. A key contribution is a new data association method that reallocates target tracks across the team. The distributed MHT is compared against another distributed multi-target tracker to test its utility for multi-robot, multi-target tracking.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Distributed Multiple Hypothesis Tracker for Mobile Sensor Networks


    Weitere Titelangaben:

    Springer Proceedings in Advanced Robotics


    Beteiligte:
    Bourgeois, Julien (Herausgeber:in) / Paik, Jamie (Herausgeber:in) / Piranda, Benoît (Herausgeber:in) / Werfel, Justin (Herausgeber:in) / Hauert, Sabine (Herausgeber:in) / Pierson, Alyssa (Herausgeber:in) / Hamann, Heiko (Herausgeber:in) / Lam, Tin Lun (Herausgeber:in) / Matsuno, Fumitoshi (Herausgeber:in) / Mehr, Negar (Herausgeber:in)

    Kongress:

    International Symposium on Distributed Autonomous Robotic Systems ; 2022 ; Montbéliard, France November 28, 2022 - November 30, 2022



    Erscheinungsdatum :

    01.02.2024


    Format / Umfang :

    17 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Event-Based Sensor Multiple Hypothesis Tracker For Space Domain Awareness

    Oliver, Rachel | British Library Conference Proceedings | 2022


    Robust multi-hypothesis tracker fusing diverse sensor information

    Repiso Polo, Ely | BASE | 2015

    Freier Zugriff



    Track Initiation for a Multiple Hypothesis Tracker with ML-PMHT

    Schoenecker, Steven / Grimes, John | IEEE | 2022