The multiple hypothesis tracker (MHT) and finite set statistics (FISST) are two approaches to multitarget tracking, which both have been heralded as optimal. In this paper, we show that the multitarget Bayes filter with basis in FISST can be expressed in terms the MHT formalism, consisting of association hypotheses with corresponding probabilities and hypothesis-conditional densities of the targets. Furthermore, we show that the resulting MHT-like method under appropriate assumptions (Poisson clutter and birth models, no target death, linear-Gaussian Markov target kinematics) only differs from Reid's MHT with regard to the birth process.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Relationship Between Finite Set Statistics and the Multiple Hypothesis Tracker


    Beteiligte:
    Brekke, Edmund (Autor:in) / Chitre, Mandar (Autor:in)


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    565151 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Distributed Multiple Hypothesis Tracker for Mobile Sensor Networks

    Xin, Pujie / Dames, Philip | Springer Verlag | 2024


    Event-Based Sensor Multiple Hypothesis Tracker For Space Domain Awareness

    Oliver, Rachel | British Library Conference Proceedings | 2022


    Making the Probabilistic Multi-Hypothesis Tracker the Tracker of Choice

    IEEE; Aerospace and Electronics Systems Society | British Library Conference Proceedings | 1999


    Track Initiation for a Multiple Hypothesis Tracker with ML-PMHT

    Schoenecker, Steven / Grimes, John | IEEE | 2022