Marker-based based motion capture is the prevalent technique for estimating human motion. A common problem with the approach is the occlusion and mis-labeling of the markers; typically the data requires tedious manual cleaning in post processing. We present a constrained extended Kalman filter method that estimates full body human motion in real time and handles missing and mis-labeled markers. The approach is validated on two datasets and is shown to produce comparable results to using manually cleaned data. The constrained estimator ensures realistic human joint trajectories that satisfy kinematic limits.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-Time Unlabeled Marker Pose Estimation via Constrained Extended Kalman Filter


    Weitere Titelangaben:

    Springer Proceedings in Advanced Robotics


    Beteiligte:
    Xiao, Jing (Herausgeber:in) / Kröger, Torsten (Herausgeber:in) / Khatib, Oussama (Herausgeber:in) / Joukov, Vladimir (Autor:in) / Lin, Jonathan F. S. (Autor:in) / Westermann, Kevin (Autor:in) / Kulić, Dana (Autor:in)

    Kongress:

    International Symposium on Experimental Robotics ; 2018 ; Buenos Aires, Argentina November 05, 2018 - November 08, 2018



    Erscheinungsdatum :

    23.01.2020


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Real-Time Unlabeled Marker Pose Estimation via Constrained Extended Kalman Filter

    Joukov, Vladimir / Lin, Jonathan F. S. / Westermann, Kevin et al. | TIBKAT | 2020




    Extended Kalman Filter for Spacecraft Pose Estimation Using Dual Quaternions

    Filipe, Nuno / Kontitsis, Michail / Tsiotras, Panagiotis | AIAA | 2015


    Real-Time Extended Kalman Filter Stability Indicator

    Lassak, Kyle / Gu, Yu | AIAA | 2016