One of the essential tasks for Autonomous Driving and Driving Assistance systems is the detection and tracking of Vulnerable Road Users (VRU) and traffic objects. Many recent developments in this area have been leveraging Deep Learning techniques. However, these Deep Learning models require heavy computational power. For this reason, optimising software components coupled with adequate hardware choices is crucial in the development of a system that can infer in real-time. This paper proposes solutions for object detection and tracking in an Autonomous Driving scenario by comparing and exploring the applicability of different State-of-the-art object detectors trained on the BDD100K dataset, namely YOLOv5, Scaled-YOLOv4 and YOLOR. In addition, the paper explores the deployment of these algorithms on Edge Devices, more specifically, the NVIDIA Jetson AGX Xavier. Furthermore, it examines the use of the DeepStream technology for real-time inference by comparing different object trackers, such as NvDCF and DeepSORT, in the KITTI tracking dataset. The proposed solution considers a YOLOR-CSP architecture with a DeepSORT tracker running at 33.3 FPS with a detection interval of one and 17 FPS with an interval of one.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    YOLO-Based Object Detection and Tracking for Autonomous Vehicles Using Edge Devices


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Tardioli, Danilo (Herausgeber:in) / Matellán, Vicente (Herausgeber:in) / Heredia, Guillermo (Herausgeber:in) / Silva, Manuel F. (Herausgeber:in) / Marques, Lino (Herausgeber:in) / Azevedo, Pedro (Autor:in) / Santos, Vítor (Autor:in)

    Kongress:

    Iberian Robotics conference ; 2022 ; Zaragoza, Spain November 23, 2022 - November 25, 2022



    Erscheinungsdatum :

    19.11.2022


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Object Detection in Autonomous Maritime Vehicles: Comparison Between YOLO V8 and EfficientDet

    Mehla, Nandni / Ishita / Talukdar, Ritika et al. | Springer Verlag | 2023


    Enhancing Transportation Safety with YOLO-Based CNN Autonomous Vehicles

    S, Sarumathi. / Sabir, Mohammed / Suhail, Mohammed et al. | IEEE | 2024


    Multi-Object Tracking For Autonomous Vehicles

    RADHA HAYDER / PANG SU | Europäisches Patentamt | 2022

    Freier Zugriff

    Multi-object tracking for autonomous vehicles

    RADHA HAYDER / PANG SU | Europäisches Patentamt | 2024

    Freier Zugriff