Unmanned aerial vehicle (UAV) swarms offer significant advantages in the form of close reconnaissance, flexible self-organized coordination, and attack unknown targets. Distributed online adaptive mission planning is a critical issue that must be addressed in the operational applications. Accordingly, a distributed online adaptive mission planning method for UAV swarm is proposed. We developed an adaptive heuristic information state transition method based on an ant colony optimization algorithm for the two mission modes of reconnaissance-search and attack. Considering the local adjacent range of a UAVs’ consumption attack on its target, an adaptive target allocation decision algorithm is employed to improve the efficiency of the entire swarm’s search and attack mission execution. The proposed method’s effectiveness has been verified through simulation experiments, which reveal the method to yield an optimal weighted comprehensive total target existence time and search coverage rate.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Online Adaptive Cooperative Search-Attack Mission Planning for UAV Swarm in Unknown Environment


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yan, Liang (Herausgeber:in) / Duan, Haibin (Herausgeber:in) / Deng, Yimin (Herausgeber:in) / Liu, Hongfu (Autor:in) / Fu, Yajing (Autor:in) / Chen, Libin (Autor:in)

    Kongress:

    International Conference on Guidance, Navigation and Control ; 2024 ; Changsha, China August 09, 2024 - August 11, 2024



    Erscheinungsdatum :

    02.03.2025


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Online Unmanned Aerial Vehicles Search Planning in an Unknown Search Environment

    Haopeng Duan / Kaiming Xiao / Lihua Liu et al. | DOAJ | 2024

    Freier Zugriff

    Online cooperative path planning for multi-quadrotors in an unknown dynamic environment

    Jia, Zhenyue / Lin, Ping / Liu, Jiaolong et al. | SAGE Publications | 2022



    Adaptive UAV Swarm Mission Planning by Temporal Difference Learning

    Gopalakrishnan, Shreevanth Krishnaa / Al-Rubaye, Saba / Inalhan, Gokhan | IEEE | 2021