The prevalence of Unmanned Aerial Vehicles (UAVs) in precision agriculture has been growing rapidly. This paper tackles the UAV global mission planning problem by incorporating a greater capacity for human-machine teaming in the architecture of a flexibly autonomous, near-fully-distributed Mission Management System for UAV swarms. Subsequently, the two problems of global mission planning are solved simultaneously using an integrated solution. This consists of a geometric clustering algorithm which prioritizes the minimization of overall mission time, and an off-policy, model-free Temporal Difference Learning global agent capable of learning about an initially unknown mission environment through simulations. The latter component makes the solution adaptive to missions with different requirements.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive UAV Swarm Mission Planning by Temporal Difference Learning




    Erscheinungsdatum :

    03.10.2021


    Format / Umfang :

    2338127 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Critical Technologies for UAV Swarm Collaborative Mission Planning

    Yu, Sun / Ranran, Yin / Nan, Li | Springer Verlag | 2024



    Mission Planning for Shepherding a Swarm of Uninhabited Aerial Vehicles

    Liu, Jing / Anavatti, Sreenatha / Garratt, Matthew et al. | Springer Verlag | 2021