This chapter covers how 3D data is represented and processed using voxels, point clouds, and meshes, with methods like PointNet and DGCNN. It discusses early and late fusion strategies for combining sensor data, emphasizing LiDARcamera fusion techniques such as Frustum PointNets and PointPainting to improve object detection. Additionally, feature-level fusion methods like DeepFusion and BEVFusion improve 3D perception by aligning sensor data for more accurate tracking and detection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robot Perception: 3D Data and Sensor Fusion


    Beteiligte:

    Erschienen in:

    AI for Robotics ; Kapitel : 3 ; 107-137


    Erscheinungsdatum :

    03.05.2025


    Format / Umfang :

    31 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Multi-sensor fusion mapping robot and data fusion method

    SAN HONGJUN / PENG ZHEN / LI CHUNLEI et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Data Fusion in Multi Sensor Platforms for Widearea Perception

    Polychronopoulos, A. / Floudas, N. / Amditis, A. et al. | British Library Conference Proceedings | 2006


    Perception of Microburst Based on Multi-Sensor Data Fusion

    Lei, X. / Zhu, B. | British Library Online Contents | 2011


    Perception Sensor for a Mobile Robot

    Hou, K. M. / Belloum, A. / Yao, E. et al. | British Library Conference Proceedings | 1995


    Data fusion in multi sensor platforms for wide-area perception

    Polychronopoulos, A. / Floudas, N. / Amditis, A. et al. | IEEE | 2006