The increasing use of the Internet in vehicles has made travel more convenient. However, there are several technological weaknesses that intelligent vehicle attackers can exploit, creating several security issues. These security concerns have drawn attention to the safety protection technologies of the in-vehicle system. We investigated the application of deep learning-based recurrent neural networks (RNNs) for enhanced auto encoder networks and intrusion detection in automobiles. To effectively comprehend the vehicle’s boundary behaviour and identify invasive behaviour, we merged two algorithms. The correctness and efficacy of the proposed model were verified through an analysis of actual vehicle data. The experiment’s results show that integrating the two technologies can successfully and dependably identify aberrant border behaviour. The model’s parameters are updated iteratively using the time-based backpropagation technique. We verified that the suggested model in the study may attain a detection accuracy of more than 96%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Intrusion System for Vehicular Ad Hoc Networks Using Deep Learning


    Weitere Titelangaben:

    Studies Comp.Intelligence


    Beteiligte:
    Bhatia, Jitendra (Herausgeber:in) / Tanwar, Sudeep (Herausgeber:in) / Rodrigues, Joel J. P. C. (Herausgeber:in) / Kumhar, Malaram (Herausgeber:in) / Kadwal, Mohit (Autor:in) / Sharma, Deepali (Autor:in) / Singh, Nishu (Autor:in) / Pawar, Lalita (Autor:in) / Jain, Sangeeta (Autor:in)


    Erscheinungsdatum :

    09.06.2025


    Format / Umfang :

    29 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Deep Active Learning Intrusion Detection and Load Balancing in Software-Defined Vehicular Networks

    Ahmed, Usman / Lin, Jerry Chun-Wei / Srivastava, Gautam et al. | IEEE | 2023



    VEHICULAR INTRUSION DETECTION DEVICE

    SAKIYAMA MASAAKI / ADACHI HISASHI / HIROSUE SHOTARO | Europäisches Patentamt | 2021

    Freier Zugriff