With the development of artificial intelligence, reinforcement learning plays an increasingly important role in the robot operation filed. In this paper, a trajectory optimization method based on local dynamic model fitting is proposed to improve sample utilization and reduce the difficulty of dynamic model learning. Firstly, the Gaussian mixture model of the robot was constructed, and based on this, the accurate local dynamics model was obtained through the Normal-inverse-wishart distribution. Secondly, LQR optimization algorithm was used to optimize the robot trajectory, and the optimal control strategy was obtained during the grasping process of the robot. Finally, the effectiveness of the proposed algorithm is verified on the dynamic simulation platform. The experimental results show that the method proposed in this paper can significantly improve sample utilization and learning efficiency.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robot Trajectory Optimization with Reinforcement Learning Based on Local Dynamic Fitting


    Weitere Titelangaben:

    Lect.Notes Computer


    Beteiligte:
    Yang, Huayong (Herausgeber:in) / Liu, Honghai (Herausgeber:in) / Zou, Jun (Herausgeber:in) / Yin, Zhouping (Herausgeber:in) / Liu, Lianqing (Herausgeber:in) / Yang, Geng (Herausgeber:in) / Ouyang, Xiaoping (Herausgeber:in) / Wang, Zhiyong (Herausgeber:in) / Liang, Ji (Autor:in) / Yan, Shuo (Autor:in)

    Kongress:

    International Conference on Intelligent Robotics and Applications ; 2023 ; Hangzhou, China July 05, 2023 - July 07, 2023



    Erscheinungsdatum :

    16.10.2023


    Format / Umfang :

    13 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Robot Trajectory Optimization with Reinforcement Learning Based on Local Dynamic Fitting

    Liang, Ji / Yan, Shuo / Sun, Guangbin et al. | TIBKAT | 2023


    Noise- And Fuel-Minimal Departure Trajectory Optimization with Reinforcement Learning

    Nguyen, Chris H. / Shihua, James M. / Hui, Ka Yiu et al. | TIBKAT | 2023


    Noise- and Fuel-Minimal Departure Trajectory Optimization with Reinforcement Learning

    Nguyen, Chris H. / Shihua, James M. / Hui, Ka Yiu et al. | AIAA | 2023


    Fitting Constrained Trajectory with High Variability into Redundant Robot Workspace

    Lončarević, Zvezdan / Petrić, Tadej / Gams, Andrej | TIBKAT | 2022


    Fitting Constrained Trajectory with High Variability into Redundant Robot Workspace

    Lončarević, Zvezdan / Petrič, Tadej / Gams, Andrej | Springer Verlag | 2022