With the rising tendency to deploy autonomous robots, their navigational decisions will strongly influence humans. Robot navigation should be explainable to mitigate the undesirable effects of navigation faults and unexpectedness on people. To contribute to compliance between humans and autonomous robots, we present HiXRoN (Hierarchical eXplainable Robot Navigation)—a comprehensive hierarchical framework for explaining robot navigational choices. Besides providing explanations of robot navigation, our framework encompasses qualitative, quantitative, and temporal strategies for explanation conveyance. We further discuss its possibilities and limitations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Towards a Holistic Framework for Explainable Robot Navigation


    Weitere Titelangaben:

    Springer Proceedings in Advanced Robotics


    Beteiligte:
    Piazza, Cristina (Herausgeber:in) / Capsi-Morales, Patricia (Herausgeber:in) / Figueredo, Luis (Herausgeber:in) / Keppler, Manuel (Herausgeber:in) / Schütze, Hinrich (Herausgeber:in) / Halilovic, Amar (Autor:in) / Krivic, Senka (Autor:in)

    Kongress:

    International Workshop on Human-Friendly Robotics ; 2023 ; Munich, Germany September 20, 2023 - September 21, 2023



    Erscheinungsdatum :

    10.03.2024


    Format / Umfang :

    16 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Towards Explainable Road Navigation Systems

    Alsheeb, Khalid / Brandao, Martim | IEEE | 2023




    Towards culturally aware robot navigation

    Truong, Xuan Tung / Ou, Yong Sheng / Ngo, Trung-Dung | IEEE | 2016


    Towards a holistic performance evaluation framework for drone-based object detection

    Petrides, P. / Kyrkou, C. / Kolios, P. et al. | IEEE | 2017