Interactive scenarios are of great significance for the testing of high-level automated vehicles. Based on the structure of Generative Adversarial Network (GAN), the Interactive Trajectories GAN model (ITGAN) is proposed in this paper. This research comprehensively considers both of the dynamic interactions between agents and the responses of agents to the static road environment. ITGAN consists of a specially designed pair of generator and discriminator, which are trained iteratively in an adversarial manner. As a data-driven agent model, ITGAN has the ability to generate agent interactive trajectories just like those from the real world. In order to verify the utility of ITGAN, experiments are conducted with the co-simulation framework of CARLA and SUMO, where ITGAN is implemented as the external agent control model to help generate interactive driving scenarios on various types of urban roads. By the qualitative and quantitative analysis of the experiment results, it shows that ITGAN can produce more effective interactive scenarios compared with the traditional agent model and has great potential to supplement the deficiencies of existing testing methods for high-level automated vehicles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    ITGAN: An Interactive Trajectories Generative Adversarial Network Model for Automated Driving Scenario Generation


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Liao, Zeguang (Autor:in) / Cheng, Han (Autor:in) / Wang, Xuan (Autor:in) / Tao, Xin (Autor:in) / Zhang, Yihuan (Autor:in) / Dai, Yifan (Autor:in) / Li, Keqiang (Autor:in)

    Kongress:

    Society of Automotive Engineers (SAE)-China Congress ; 2022 ; Shanghai, China November 22, 2022 - November 24, 2022



    Erscheinungsdatum :

    29.04.2023


    Format / Umfang :

    13 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Generation of Driving Scenario Trajectories with Generative Adversarial Networks

    Demetriou, Andreas / Allsvag, Henrik / Rahrovani, Sadegh et al. | IEEE | 2020


    Driving Scenario Trajectories

    Demetriou, Andreas | DataCite | 2024


    Generative adversarial network enriched driving simulation

    SONG HAO / PENG JUN / DENG NENGXIU et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Generative adversarial network enriched driving simulation

    SONG HAO / PENG JUN / DENG NENGXIU et al. | Europäisches Patentamt | 2023

    Freier Zugriff