This paper utilizes the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with an elite strategy for multi-objective optimization of bus timetables. In this study, three optimization objectives - passenger travel time, bus operation cost, and bus resource efficiency - are common and conflicting goals in optimizing bus route services. The algorithm’s findings indicate that the optimized timetable leads to a 10.2% reduction in passenger travel time, a 4% decrease in public transportation operating costs, and an 8.4% reduction in the index of public transport resource efficiency, thereby achieving partial optimization of the objectives. This notable improvement demonstrates the potential of multi-objective optimization methods in bus operation management.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Departure timetable optimization based on NSGA-II


    Beteiligte:
    Wu, Jinsong (Herausgeber:in) / Ma'aram, Azanizawati (Herausgeber:in) / Liu, Yingxin (Autor:in) / Wang, Boning (Autor:in)

    Kongress:

    Ninth International Conference on Electromechanical Control Technology and Transportation (ICECTT 2024) ; 2024 ; Guilin, China


    Erschienen in:

    Proc. SPIE ; 13251


    Erscheinungsdatum :

    28.08.2024





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Bus departure timetable optimization method

    ZUO XINGQUAN / WANG KAIYUAN / HUANG HAI | Europäisches Patentamt | 2022

    Freier Zugriff

    Optimization of Subway Departure Timetable by Genetic Algorithm

    He, Junxiang / Zeng, Xiaoqing / Ying, Peiran et al. | TIBKAT | 2019


    Optimization of Subway Departure Timetable by Genetic Algorithm

    He, Junxiang / Zeng, Xiaoqing / Ying, Peiran et al. | Springer Verlag | 2019