Airports are complex environments with terminals, gates, shops, and facilities hosting assets like luggage carts, maintenance tools, and ground vehicles. In these spaces, pedestrians and Autonomous Guided Vehicles (AGVs) require precise indoor localization for efficient navigation. Real-time localization reduces confusion, saves time, and enhances passenger experiences by providing clear directions to gates, check-ins, baggage claims, and lounges. This study proposes an AI and Visible Light Communication (VLC)-based airport management system to optimize traffic, reduce congestion, and improve safety. VLC-enabled luminaires serve as transmission points, offering location-specific guidance, while AI agents track and manage assets in real time. Tetrachromatic LED luminaires with On-Off Keying (OOK) modulation and SiC optical receivers replace traditional gateways, forming a mesh hybrid network for reliable data exchange. AI agents use deep reinforcement learning (DRL) to process data, optimize routes, and prioritize movements. Traffic states are encoded as inputs to neural networks trained via Q-learning. Results show improved traffic control, travel direction inference, and route optimization through agent-based simulations. This approach enhances indoor navigation without GPS, ensuring smooth operations for AGVs and pedestrians. Integrating AI and VLC improves airport efficiency, safety, and passenger satisfaction.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Intelligent traffic management at airport: innovative integration of visible light communication and artificial intelligence


    Beteiligte:
    Kim, Jong Kyu (Herausgeber:in) / Krames, Michael R. (Herausgeber:in) / Strassburg, Martin (Herausgeber:in) / Vieira, M. (Autor:in) / Vieira, M. A. (Autor:in) / Galvão, G. (Autor:in) / Louro, P. (Autor:in) / Fantoni, A. (Autor:in) / Vieira, P. (Autor:in) / Véstias, M. (Autor:in)

    Kongress:

    Light-Emitting Devices, Materials, and Applications XXIX ; 2025 ; San Francisco, California, United States


    Erschienen in:

    Proc. SPIE ; 13386


    Erscheinungsdatum :

    19.03.2025





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Artificial Intelligence Traffic Light

    GIM JEON IL | Europäisches Patentamt | 2025

    Freier Zugriff

    Artificial intelligent traffic light

    SUNG SAM KYUNG | Europäisches Patentamt | 2022

    Freier Zugriff

    Dynamic vehicular visible light communication for traffic management

    Vieira, M A. / Vieira, M. / Vieira, P. et al. | SPIE | 2023


    Artificial intelligent traffic light

    Europäisches Patentamt | 2023

    Freier Zugriff