This study integrates Visible Light Communication (VLC) and Artificial Intelligence (AI) to enhance traffic signal control, reduce congestion, and improve safety through real-time data-driven management. VLC leverages existing infrastructure to transmit real-time data on vehicle and pedestrian dynamics, while AI agents employing Deep Reinforcement Learning (DRL) optimize traffic signals and vehicle trajectories across intersections. A centralized system trains a unified DRL model to coordinate local agents managing individual intersections, enabling real-time signal adjustments via a queue/request/response methodology. Simulations and real-world trials validate the approach, showing significant reductions in waiting and travel times, particularly under rerouting scenarios. Scalable to diverse intersection types, the system adapts dynamically to changing traffic conditions, improving efficiency and safety. Furthermore, the integration of VLC underscores the importance of cybersecurity in smart city infrastructures. This research aligns with CyberSecPro’s mission (https://www.cybersecpro-project.eu/), advancing cybersecurity competencies and ensuring privacy-respecting innovations in traffic management systems. The integration of VLC technology for real-time data transmission not only optimizes traffic flow but also highlights the importance of cybersecurity in smart city infrastructures ensuring secure and privacy-respecting innovations in traffic management systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Innovative integration of visible light communication and artificial intelligence to enhance urban traffic management


    Beteiligte:
    Notomi, Masaya (Herausgeber:in) / Zhou, Tingyi (Herausgeber:in) / Galvão, G. (Autor:in) / Vieira, M. A. (Autor:in) / Vieira, M. (Autor:in) / Véstias, M. (Autor:in) / Louro, P. (Autor:in) / Jardim-Gonçalves, R. (Autor:in)

    Kongress:

    AI and Optical Data Sciences VI ; 2025 ; San Francisco, California, United States


    Erschienen in:

    Proc. SPIE ; 13375


    Erscheinungsdatum :

    21.03.2025





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Enhancing Urban Traffic Management with Visible Light Communication and Reinforcement Learning

    Galvão Gonçalo / Vieira Manuel Augusto / Vieira Manuela et al. | DOAJ | 2024

    Freier Zugriff

    Artificial Intelligence Traffic Light

    GIM JEON IL | Europäisches Patentamt | 2025

    Freier Zugriff

    Dynamic vehicular visible light communication for traffic management

    Vieira, M A. / Vieira, M. / Vieira, P. et al. | SPIE | 2023


    Artificial intelligence techniques for urban traffic control

    Bielli, Maurizio / Ambrosino, Giorgio / Boero, Marco et al. | Elsevier | 1991