In this study, we introduce a novel approach to the parameter estimation of Unmanned Aerial Vehicles (UAVs) utilizing the dandelion algorithm, a bio-inspired optimization technique that simulates the seed dispersal mechanism of dandelions. With UAVs increasingly becoming integral to various sectors, accurate parameter estimation emerges as a critical factor in ensuring their optimal performance and safety. Traditional parameter estimation methods often fall short, plagued by computational inefficiencies and a propensity for local optima, which can significantly hinder UAV operations. The dandelion algorithm, with its unique global search capabilities and adeptness in navigating multidimensional spaces, presents a solution that markedly enhances the precision and speed of parameter estimation. Through a series of simulations involving diverse UAV models, this study compares the performance of the dandelion algorithm against the conventional technique; the Particle Swarm Optimization (PSO), demonstrating its superior ability in achieving rapid convergence, higher accuracy, and an exceptional aptitude for avoiding local optima. Our findings not only underscore the algorithm's potential to revolutionize UAV parameter estimation but also highlight its applicability in advancing UAV technology and bio-inspired computational algorithms. This research contributes to the aerospace engineering field by offering an innovative, efficient alternative to existing parameter estimation methods, promising significant improvements in the design, operation, and safety of UAV systems across a spectrum of applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Parameter estimation of an unmanned aerial vehicle using dandelion algorithm


    Beteiligte:
    Nguyen, Hoa G. (Herausgeber:in) / Muench, Paul L. (Herausgeber:in) / Diltz, Robert (Herausgeber:in) / AlShabi, Mohammad (Autor:in) / Saleh Osman Hassan, Omar (Autor:in) / Obaideen, Khaled (Autor:in) / Gadsden, S. Andrew (Autor:in) / Bettayeb, Maamar (Autor:in)

    Kongress:

    Unmanned Systems Technology XXVI ; 2024 ; National Harbor, Maryland, United States


    Erschienen in:

    Proc. SPIE ; 13055


    Erscheinungsdatum :

    07.06.2024





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Unmanned Aerial Vehicle security using Recursive parameter estimation

    Birnbaum, Zachary / Dolgikh, Andrey / Skormin, Victor et al. | IEEE | 2014


    UNMANNED AERIAL VEHICLE DEPLOYMENT PARAMETER MODIFICATION

    KEEN MARTIN G / JENKINS JANA H / WANG XIN et al. | Europäisches Patentamt | 2024

    Freier Zugriff


    Unmanned aerial vehicle control parameter debugging frame

    JIANG JIALIN | Europäisches Patentamt | 2021

    Freier Zugriff

    Estimation of Unmanned Aerial Vehicle Dynamics

    Hajiyev, Chingiz / Soken, Halil Ersin / Vural, Sıtkı Yenal | Springer Verlag | 2015