With the gradual improvement of intelligent transportation system, unmanned driving, as a representative product of the intelligent development of automobiles, has attracted much attention for its broad application prospects and influence. Technically speaking, path planning is the key to the realization of unmanned driving, and it is also one of the research hotspots in the field of unmanned driving technology. Aiming at the problems of complicated calculation, low efficiency and unsmooth path in the path planning process of unmanned cars, this paper will focus on the global trajectory planning algorithm, take Rapidly-exploring Random Tree (RRT) algorithm as the research object, and put forward corresponding optimization strategies, so as to improve the overall performance of the vehicle path planning algorithm. Practice has proved that the improved RRT algorithm has obvious advantages in sampling time, the number of points used, the number of sharp points, the path cost and other indicators after MATLAB simulation test. Compared with the commonly used original RRT algorithm and RRT* algorithm, it can solve the optimal path of unmanned cars more quickly.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on path planning algorithm of unmanned vehicle based on RRT


    Beteiligte:
    Yao, Xinwei (Herausgeber:in) / Kumar, Neeraj (Herausgeber:in) / Qu, Fengzhen (Autor:in) / Du, Feifei (Autor:in) / Zong, Lishu (Autor:in) / Xi, Chaohu (Autor:in) / Tian, Na (Autor:in)

    Kongress:

    Fourth International Conference on Smart City Engineering and Public Transportation (SCEPT 2024) ; 2024 ; Beijin, China


    Erschienen in:

    Proc. SPIE ; 13160


    Erscheinungsdatum :

    16.05.2024





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Research on Unmanned Aerial Vehicle Path Planning

    Junhai Luo / Yuxin Tian / Zhiyan Wang | DOAJ | 2024

    Freier Zugriff

    Co-Evolutionary Algorithm-Based Multi-Unmanned Aerial Vehicle Cooperative Path Planning

    Yan Wu / Mingtao Nie / Xiaolei Ma et al. | DOAJ | 2023

    Freier Zugriff

    Unmanned aerial vehicle swarm path planning

    JAMES SCOTT / RAHEB ROBERT | Europäisches Patentamt | 2025

    Freier Zugriff

    Smoothed A* algorithm for practical unmanned surface vehicle path planning

    Song, R / Liu, Y / Bucknall, R | BASE | 2018

    Freier Zugriff

    PATH PLANNING FOR AN UNMANNED VEHICLE

    COHEN OFIR / APPELMAN DINA | Europäisches Patentamt | 2024

    Freier Zugriff