In connected multi-vehicle system, collaborative perception and fusion technologies serve to compensate for the limitations inherent in single vehicle sensors. It can effectively combine the filtering and tracking results from sensors by fusing. However, existing multi-vehicle fusion methods do not adequately address the challenges due to the inherent inaccuracies in single vehicle data fusion and the differences in perception data among vehicles in real-world multi-vehicle scenarios. To address these challenges, we propose a fusion framework for real multiple connected vehicle scenarios. First, perceived target data are associated by the Unscented Kalman Filter (UKF) and trajectories are generated by the Hungarian algorithm. Second, generated trajectories are deduplicated and fused using methods based on Hausdorff distance with average distance complementation. Experiments conducted on real-world scenarios show a notable enhancement in fused target position accuracy and motion state accuracy. This improvement can significantly contribute to bolstering the overall driving experience through enhanced driver assistance, human-machine interaction, and other end-of-vehicle applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A late fusion framework for multivehicle collaborative perception


    Beteiligte:
    Liu, Bin (Herausgeber:in) / Leng, Lu (Herausgeber:in) / Li, Zengwen (Autor:in) / Gao, Yingying (Autor:in) / Lv, Huaxin (Autor:in) / Chen, Changxue (Autor:in) / Tao, Peng (Autor:in) / Zeng, Jingyu (Autor:in)

    Kongress:

    Third International Conference on Image Processing, Object Detection, and Tracking (IPODT 2024) ; 2024 ; Nanjing, China


    Erschienen in:

    Proc. SPIE ; 13396


    Erscheinungsdatum :

    24.10.2024





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Semiautonomous multivehicle safety

    Verma, R. / Vecchio, D.D. | Tema Archiv | 2011



    Multivehicle Cooperative Driving Using Cooperative Perception: Design and Experimental Validation

    Kim, Seong-Woo / Qin, Baoxing / Chong, Zhuang Jie et al. | IEEE | 2015


    Intelligent navigation and multivehicle coordination

    McKay, Mark D. / Anderson, Matthew O. / Kinoshita, Robert A. et al. | SPIE | 1999


    Multivehicle Spacing Along Smooth Curvilinear Paths

    Weitz, Lesley / Hurtado, John | AIAA | 2010