Software vulnerability management is one of the most critical and crucial security techniques, which analyzes the automotive software/firmware across the digital cockpit, ADAS, V2X, etc. domains for vulnerabilities, and provides security patches for the concerned Common Vulnerabilities and Exposures (CVE). The process of automotive SW/FW vulnerability management system between the OEMs and vendors happen through a channel of fixing a certain number of vulnerabilities by 1st tier supplier which needs to be verified in front of OEMs for the fixed number and type of patches in there deliverable SW/FW. The gap of verification between for the fixed patches between the OEMs and 1st tier supplier requires a reliable human independent intelligent technique to have a trustworthiness of verification. Hence, in this regard, a novel machine learning based intelligent verification technique is proposed which is free from human intervention to verify the certain number and type of vulnerabilities fixes in the embedded binary image. The technique involves training the machine learning models for software/firmware patched binaries and inferring the application of patches on the verification binary image by using the trained machine-learning model. The technique verifies the vulnerability fixes for all the given number of vulnerabilities in a given package from the whole binary image. Hence, the proposed approach resolves the vulnerability patches verification issue using an intelligent artificial intelligence-based technique among OEMs and 1st tier supplier, which is free from human interference.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Learning Based Real Time Vulnerability Fixes Verification Mechanism for Automotive Firmware/Software


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    SAE WCX Digital Summit ; 2021



    Erscheinungsdatum :

    06.04.2021




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Deep Learning Based Real Time Vulnerability Fixes Verification Mechanism for Automotive Firmware/Software

    Ansari, Asadullah / Ameen Alimohideen, Mohamed / P.C., Karthik | British Library Conference Proceedings | 2021


    A real time simulation environment for the verification of automotive electronic controller software

    Wagner,J.R. / Furry,J.S. / General Motors,Delco Electronics,US | Kraftfahrwesen | 1992


    Intel one time programmable memories - the automotive firmware solution of the 80s

    Tierno,B. / Fuetterer,M. / Intel,US | Kraftfahrwesen | 1986


    Advanced firmware device manager for automotive: a case study

    Silva,J.H. / Visteon,US | Kraftfahrwesen | 2012


    Firmware Update Over The Air (FOTA) for Automotive Industry

    Shavit, M. / Gryc, A. / Miucic, R. et al. | British Library Conference Proceedings | 2007