As automotive manufacturers continue to increase their use of thermoplastics for interior components (due to cost, weight, …), the potential for frictionally incompatible materials contacting each other, resulting in squeaks and rattles, will also increase. This will go counter to the increased customer demand for quieter interiors. To address this situation, Ford's Advanced Vehicle Technology Squeak and Rattle Prevention Engineering Department and Virginia Tech have developed a tester that can measure friction as a function of relative sliding velocity during frictional instabilities such as stick slip. The Ford/VT team is developing a polymeric material pairing database that will be used as a guide for current and future designs to eliminate potential squeak concerns. Based upon the database, along with a physical property analysis of the various plastic (viscoelastic) materials used in the interior, an analytical model will be developed as a tool to predict frictional behavior. The model will be integrated into the automotive component design process (CAD/CAM/CAE) so that potential concerns can be addressed prior to critical design milestone freeze dates.This collaborative effort between Ford and VT, to investigate friction and noise in automotive components, was establish in 1990. Some summaries thus far are as follows: This paper will review our research results to date. The characterization of polymer surfaces will be provided to establish material structure/property relationships (surface roughness and bulk properties) which will predict and produce stable friction behavior. Also COF versus velocity curves will be presented for several different material pairs and surface types.
Frictional Behavior of Automotive Interior Polymeric Material Pairs
Sae Technical Papers
SAE Noise and Vibration Conference and Exposition ; 1997
20.05.1997
Aufsatz (Konferenz)
Englisch
Frictional Behavior of Automotive Interior Polymeric Material Pairs
British Library Conference Proceedings | 1997
|Frictional behavior of automotive interior polymeric material pairs
Kraftfahrwesen | 1997
|SAE Technical Papers | 2001
|METHOD FOR MANUFACTURING AUTOMOTIVE INTERIOR MATERIAL AND AUTOMOTIVE INTERIOR MATERIAL
Europäisches Patentamt | 2018
|MANUFACTURING METHOD OF AUTOMOTIVE INTERIOR MATERIAL AND AUTOMOTIVE INTERIOR MATERIAL
Europäisches Patentamt | 2018
|