Recent researches in autonomous driving mainly consider the uncertainty in perception and prediction modules for safety enhancement. However, obstacles which block the field-of-view (FOV) of sensors could generate blind areas and leaves environmental uncertainty a remaining challenge for autonomous vehicles. Current solutions mainly rely on passive obstacles avoidance in path planning instead of active perception to deal with unexplored high-risky areas. In view of the problem, this paper introduces the concept of information entropy, which quantifies uncertain information in the blind area, into the motion planning module of autonomous vehicles. Based on model predictive control (MPC) scheme, the proposed algorithm can plan collision-free trajectories while actively explore unknown areas to minimize environmental uncertainty. Simulation results under various challenging scenarios demonstrate the improvement in safety and comfort with the proposed perception-aware planning scheme.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Perception-Aware Path Planning for Autonomous Vehicles in Uncertain Environment


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Tang, Chen (Autor:in) / Xiong, Lu (Autor:in) / Chen, Zhan (Autor:in)

    Kongress:

    SAE 2022 Intelligent and Connected Vehicles Symposium ; 2022



    Erscheinungsdatum :

    22.12.2022




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Perception-Aware Path Planning for Autonomous Vehicles in Uncertain Environment

    Chen, Zhan / Xiong, Lu / Tang, Chen | British Library Conference Proceedings | 2022



    Risk-aware Path Planning for Autonomous Underwater Vehicles using Predictive Ocean Models

    Pereira, Arvind A. / Binney, Jonathan / Hollinger, Geoffrey A. et al. | Tema Archiv | 2013


    Risk-aware Path Planning for Autonomous Underwater Vehicles using Predictive Ocean Models

    Pereira, A. A. / Binney, J. / Hollinger, G. A. et al. | British Library Online Contents | 2013


    PATH PLANNING FOR AUTONOMOUS AND SEMI-AUTONOMOUS VEHICLES

    MATSUDA TAKURO / ZHANG XINGZHONG | Europäisches Patentamt | 2021

    Freier Zugriff